| ||||||||
|
| |||||||
Правила преобразования логических выражений с помощью законов логики Если логическое выражение содержит большое число операций, то составлять для него таблицу истинности достаточно сложно, так как приходится перебирать большое количество вариантов. В таких случаях формулы удобно привести к нормальной форме. Формула имеет нормальную форму, если в ней отсутствуют знаки эквиваленции, импликации, двойного отрицания, при этом знаки отрицания находятся только при логических переменных. Для приведения формулы к нормальной форме используют законы логики и правила логических преобразований. Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных. Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).
Покажем на примерах некоторые приемы и способы, применяемые при упрощении логических формул:
Упражнение 14 Упростите логические выражения, используя законы логики. F1=¬(A&B)v¬(ВvС) F2=A&Сv¬A&С F3=¬Av¬Bv¬СvAvBvС F4=¬((А&В)v¬(А&В)) F5=¬А&¬(¬ВvА) Проверьте себя (эталон ответов)
| ||||||||
| ||||||||
Сайт создан по технологии «Конструктор сайтов e-Publish» |